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Abstract
The open channel flow is the object of  this work which aims to study near-critical 
flows  through  numerical  simulations.  As  first  step,  the  problem  of  the  undular 
hydraulic jump is defined and the basic open channel equations are introduced. We use 
the  near-critical  flow  of  the  undular  jump  to  validate  the  numerical  model.  The 
numerical simulations are performed by using the commercial code Fluent with VOF 
multiphase model, pressure based explicit solver, geometric interface reconstruction 
and  standard  k- turbulence  model.  Options  and  specific  details  of  the  model  are 
presented in the corresponding sections.  The model shows that wide open-channel 
flows  can  be  studied  with  two  dimensional  grids.  In  this  work  we  also  report 
simulations and the sensitivity analysis of the undular jump to better understand this 
phenomenon. Inflow organization in a vertical shear seems to be a necessary condition 
to  create  a  detachment of  the  boundary layer  that  necessarily  has  to  occur  in  the 
undular jump. As a possible application, this model  can be used to better understand 
wave  formation  mechanism  and,  with  a  three  dimensional  implementation,  design 
near-critical open channel for recreational use. Computational cost are examined in the 
conclusions because it must to be considered for large or three dimensional domains.

Sommario
I  flussi  quasi-critici  nei  canali  a  superficie  libera  possono  essere  studiati  con 
simulazioni  numeriche.  Nella  parte  introduttiva  del  presente  lavoro  si  definisce  il 
problema del “undular hydraulic jump” riassumendo le equazioni di base per i canali a 
superficie  libera.  Il  “undular  hydraulic  jump”  viene  utilizzato  come  fenomeno  di 
riferimento per la validazione del modello numerico implementato attraverso il codice 
commerciale  Fluent.  Tale  codice  è  basato  su  un  solutore  accoppiato,  contenente 
modelli multifase a volume di fluido, con ricostruzione geometrica dell'interfaccia e con 
un modello di turbolenza standard k-. Tutti i modelli e le equazioni utilizzate sono 
specificati  in un capitolo dedicato. Le simulazioni effettuate mostrano che i  flussi  a 
superficie  libera  in canali  con sezione regolare possono essere studiati  con modelli 
bidimensionali.  Sono state  inoltre effettuate analisi  di  sensitività  delle condizioni al 
contorno.  L'organizzazione  del  profilo  verticale  delle  velocità  del  flusso  entrante 
sembra  essere  un  fattore  determinate  per  il  distacco  del  “boundary  layer”  e 
conseguente creazione di onde senza frangimento. Il modello può essere utilizzato per 
comprendere meglio il meccanismo di formazione delle onde in presenza di geometrie 
più complicate  e,  con una implementazione tridimensionale,  per progettare canali  a 
scopo ricreativo. I costi computazionali sono esaminati nelle conclusioni in quanto sono 
un parametro significativo per la realizzabilità di tali applicazioni.
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List of symbol 

A = cross sectional area normal to the channel bottom (m2)

V = average velocity of the flow (m/s) 

P = wet perimeter length  

Q=VA = discharge (m3 s-1) 

u v = velocity vector (m/s)

q=Vy = two dimensional discharge (m2 s-1)

T = with at the top of the free surface (m)

D = hydraulic depth (m)

Dh = hydraulic radius 

y = flow depth measured perpendicular to the channel bottom (m) 

Fr = Froude number 

Re = Reynolds number 

yc = critical flow depth (m) 

y fs = free surface height (m) 

S = wave steepness (x-y ratio)

b = channel width in a rectangular section (m)

aw = wave amplitude from first crest to first trough 

 = grid point per characteristic length 

F = momentum function

I = turbulent intensity 

l = turbulent length scale 

L i = generic length scale for the ith dimension 

Lw = wavelength

k = turbulent kinetic energy 
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 = turbulent dissipation rate

N = exponent in the velocity profile  

g = gravity constant: 9.81 (m s-2) 

 = density (water: 998 kg/m3)

 = dynamic viscosity (1.002 10-3 N s m-2)

  = kinematic viscosity (1.004 10-6 m2 s-1)

0 = operating density (air: 1.223 kg/m3)

p = total static pressure (Pa)

p0 = reference (atmospheric) pressure (101325 Pa)

 = volume fraction  

 = stress tensor

J f = face flux
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1. Introduction 

1.1. Open channel flow

1.1.1. Introduction

Open channels are fluid flows under gravitational force with the free surface forced 
only by atmospheric pressure. This make the study of this flow more complicated than 
the pipe flow in which simpler boundary conditions can be applied. In open channels, 
the free surface is an unknown field a priori. The flow depth, the discharge, the slope of 
channel bottom and the free surface are independent fields. Natural rivers and artificial 
channels can show non regular section and roughness. In general, the treatment of 
open channel flow is something more empirical than of pipes [35]. 

1.1.2. Classification of open channel flows

At first, we can classify the flow with free surface in steady and unsteady, knowing that 
the treatment of unsteady flows is really much more complicated and moreover, some 
basic  quantities  as  discharge,  momentum and energy are  not  conserved along the 
channel. Steady flows can be treated using discharge and energy conservation. Rivers 
without flooding effects  and relatively quiet  can be  considered steady flows in  the 
average quantities. Turbulent effects can be treated as random processes if theirs scales 
is smaller than the average flow scale. Higher energy flows can show turbulent effect 
on  the  same  scale  of  the  flow,  but  it  will  not  be  treated  in  this  work.  A  second 
classification of channel flows can regard their variability in the space. When the flow 
maintains all its characteristics along the course is called a uniform flow. This regime is 
common in artificial  channels.  If  the  space variability  becomes important,  but  still 
gradual, we have the  gradually varied flow. An example can be a channel that slowly 
change its steepness. When the flow depth changes abruptly with the space we have a 
rapidly varied flow [35]. Steady and rapidly varied flows are the subject of this study. 
Turbulent level of an open channel is classified with the Reynolds number: 

Re=
V Dh



Dh=
4A
P

 (1-1)

where Dh is the hydraulic radius, A is the cross-sectional area and P is the wet 
perimeter. The value of Re in the present study flow is about 105. 

1.1.3. Complexity 

In rivers or artificial channels where rapidly varied flow occurs, it's possible to observe 
steady three-dimensional organized structures. These structures are common to all the 
rivers and show scale invariance. The free surface shape and the back flows with air 
entrainment, known as foam or white water, characterize these waves, rollers, drops, 
shock waves, etc. People use this water structures for recreational sports like kayaking, 
rafting and river boarding (Fig 1-1,Fig 1-2) and they know, or they should know, all 
the dangerous consequences associated with these structures. Kayakers and rafters can 
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spend years and years riding different rivers all over the world trying to understand 
water organization in order to be able to predict the effects on the boat. The author has 
developed  this  experience  in  several  year  of  kayaking  and  rafting  practice.  A 
description of similar structures is presented in hydraulic books because they must be 
taken into account in the design of hydraulic works. Thus, most part of the knowledge 
about water structures is oriented on the design of dams, hydraulic drops and all sort 
of artificial works. These works however, usually study channel flows really different 
from natural rivers flows. River beds present many types of irregular rocks, from big 
boulder to small rocks while concrete works are smooth and regular with geometrical 
shapes. In general, artificial flows in hydraulic works are forced by the geometry and 
far  from the  critical  state  (see  1.2.4.).  This  means  that  in  general  more energy is 
involved, yielding strong behaviors of  the flows. In natural rivers instead the water 
erosion and the rumbling rock carried downstream by the flow, design the river bed 
through the  time.  Depending  on  the  average  steepness,  the  result  is  a  wavy flow 
usually close to the critical state. In general, given a river bed, it's almost impossible to 
predict the stationary flow with a sufficient precision to resolve water structures while 
in geometric works the studies are easier. Only few simple cases of near-critical flow in 
simple channels have been studied and a prediction of the flow in terms of free surface, 
velocity  field,  etc.  has  been  done.  Even in  these  cases,  laboratory  experiments  are 
necessary to confirm these studies. Natural rivers with rocky bed are characterized by 
strong roughness and a great amount of energy is dissipated by turbulent roller and 
friction thus, an analytical treatment of a complex river flow could results really hard 
or impossible. For these reasons a complex system approach to pinpoint the emergent 
structures and the critical transitional parameters is suggested to better understand 
water  organization  in  natural  rivers.  Complexity  can  be  studied  with  numerical 
simulations and this  work is a step in this  direction.  Later on it  will  be showed a 
discussion of  the undular jump, a water structure well known in hydraulic.  On the 
undular jump we test our numerical model and perform some sensitivity analysis. 

Fig 1-1: Kayakers surfing a natural roller in Uganda, White Nile. 
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Fig 1-2: hydraulic jump in the natural Raundalselva river, Norway (photo by the author)

1.2. Bases of open channel hydraulics 

1.2.1. Supercritical and subcritical flows

In open channel flows, the effect of gravity upon the state of the flow is represented by 
a ratio of  inertial forces to gravity forces. This ratio is given by the  Froude number, 
defined as

Fr= V
gD

 (1-2)

where V is  the mean velocity  of  the  flow, g is  the  gravity acceleration, D the 
hydraulic depth. All the quantities are defined in the “List of symbol “ pg 6. If Fr is 
equal to unit, the flow is said to be in the  critical state. For such condition, Eq.(1-2) 
gives

V=gD  (1-3)

In critical state the mean velocity of  the flow is equal to the shallow water gravity 
waves velocity. If Fr1 the flow is called subcritical; the role played by inertial forces 
is less pronounced and the flow is defined as tranquil and streaming. If Fr1 the 
flow is called supercritical; the role played by inertial forces is more pronounced and is 
characterized by high velocity and defined as rapid and torrential [35]. Is also possible 
to  define  the subcritical  flow as  the flow controlled by the  downstream condition, 
instead,  the supercritical  flow is  controlled by the upstream condition.  This  means 
signal or information can be carried upstream only in case of subcritical flow. 
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1.2.2. Momentum equation

The momentum of the flow per unit time passing a channel section is expressed by 

Q V  (1-4)

where  is the momentum coefficient for the non uniform velocity 

=
∫A

v2dA

V 2 A
 (1-5)

Q the  discharge,  the  density  of  the  water  and V the  mean  velocity  in  the 
channel  section  [35]. According to Newton's second law of  motion, the change of 
momentum per unit time in the body of water between two section 1 and 2 may be 
written as:

Q2V 2−1V 1=P1−P2W sin −F f  (1-6)

where P are the pressure acting on the section and W is the weigh of the water 
between the two section and F f is the total friction force acting along the surface of 
the channel. Assuming hydrostatic pressure 

P i=b∫
0

y i

 g yidy=b 1
2
 g yi

2  (1-7)

and  

W= g y b L

sin=
z 1−z 2
L

 (1-8)

 where b is the channel width and L the distance between the two sections, we can 
simplify the (1-6) having

z 1 y11
V 1
2

2g
=z 2 y22

V 2
2

2g
h f

 (1-9)

The friction term h f measure the losses due to external forces (channel bed) exerted 
on the water by the walls of the channel. [35]

1.2.3. Momentum function

In applying Eq.(1-9) in a short horizontal reach of a prismatic channel, the external 
force of friction and the weight effect of the water can be ignored. Thus, with =0
and F f=0 Eq.(1-6) becomes 

Q2V 2−1V 1=P1−P2  (1-10)

Assuming Eq.(1-7) we have 

11



 2
Q2

A2

1
2
 g A2 y2=1

Q2

A1

1
2
 g A1 y1

2
Q2

g A2
 A2

y2
2
=1

Q2

g A1
A1

y1
2

 (1-11)

Eq.(1-11) show a conservation quantity which is defined as momentum function 

F=
Q2

g A
 A y

2
 (1-12)

The first term is the momentum of the flow passing through the channel section per 
unit time per unit weight, and the second is the force per unit weight. Both terms are 
essentially  force  per  unit  weight.  Neglecting  friction,  in  steady  flows,  momentum 
function have to be conserved along the channel [35]. 

1.2.4. Critical Flow 

The critical state of flow is defined as the condition for which the Froude number is 
equal to unity. Thus, the velocity of  the flow is equal to the velocity of  the shallow 
water waves.  This  state  splits  the subcritical  and the supercritical  flow range.  The 
critical flow depth in a horizontal channel is therefore

yc=
V 2

g
 (1-13)

A more common definition is when the specific energy have a minimum for a given 
discharge [32]. 

1.3. Hydraulic jump 

1.3.1. Definition of hydraulic jump

The hydraulic jump in open channel occurs when the flow turn from supercritical to 
subcritical regime. The flow depth change rapidly from a low stage to an high stage. 
The result is usually an abrupt rise of water surface [35]. This local phenomenon is 
known as hydraulic jump. When the jump is high, that is, when the change in depth is 
great, the jump is called direct jump. The direct jump involve a large amount of energy 
loss through dissipation in the turbulent body of water in the jump. Consequently, the 
energy  content  in  the  flow  after  the  jump  is  appreciably  less  than  before.  This 
phenomenon occur also in the house sink when the rapid flow turns into a thicker flow 
(Fig 1-3). The wall of the sink create a sort of dam that slow down the water creating a 
subcritical flow region.
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Fig 1-3: Direct jump in the house sink 

 

1.3.2. Undular jump

An hydraulic jump with a small change in depth is called and undular jump. This flow 
regime  is  referred  as  near  critical  flow.  The  water  doesn't  rise  abruptly  but  pass 
through stationary undulation of the free surface gradually diminishing in size. The 
energy is not dissipated locally but is radiated downstream with the wave train and 
gradually  lost  due  to  turbulent  dissipation  effects.  The  undular  jump  is  a  quite 
common  phenomena  in  the  natural  rivers  where  flow  can  turn  many  time  from 
supercritical to subcritical. Generally, due to the non-symmetry of the river bed, waves 
don't look always very smooth and regular. Sometimes, generally in artificial channels 
or rivers with a smooth bed rock,  is  possible to observe undular jump with lot of 
regular wave downstream the jump (Fig 1-4). The waves generated by the jump are 
stationary in a first section after the jump. Laboratory experiments, where the wave 
train is free to propagate downstream, indicate an organized region with stationary 
waves in a number of wave length between 3 and 10 depending on the Froude number. 
Downstream of  the  organized region,  the  free-surface  exhibits  a  chaotic,  unsteady 
pattern where no visible periodicity is visible  [23]. Further downstream a damping 
flow  region  exists  where  wave  amplitude  tends  to  zero  and  all  jump  energy  is 
completely lost. 
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Fig 1-4: Natural undular jump. Vosso river; Voss, Norway 

1.3.3. Undular bore

A similar phenomenon may occur in estuaries funnel shaped with a large tidal range 
(Fig 1-5). This characteristic event is define as a hydraulic jump in translation [24]. This 
event is well known from shipping companies because has been the reason of several 
boat sinking in rivers close to the sea. It's also appreciate from surfers because they 
like very smooth and long waves. The waves or the roll formed at the front have an 
upstream  traveling  velocity.  Similar  equations  are  valid  for  both,  traveling  and 
stationary, undular jump with care on the definition of the reference system. This wave 
is a case of unsteady flow but can be treated as steady in a mobile reference system 
considering the quasi-constant speed of the tidal bore. Undular bore is probably the 
simplest  phenomenon  of  positive  undular  surge  because  of  the  absence  of  inflow 
turbulence.  For  this  reason  analytical  equations  can  be  applied  to  study  this 
phenomenon if the free surface has a solid aspect [10]. 
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Fig 1-5:  tidal bore of the Dordogne river in Sept. 2006 (Courtesy of Antony 
Colas) – bore propagation from left to right.

1.3.4. Morning Glory

In the atmosphere, a phenomenon called “Morning glory” may occur in few places in the 
world and the formation mechanism has been compared with the hydraulic jump by 
Clarke [15]. The clouds formed in these condition are very spectacular and are a pilot 
attraction (Fig 1-6). Theirs formation should be favored by a slight synoptic pressure 
gradient, cloudless sky, shallow chilled layer descending a steep and smooth hill at low 
latitude. The cold air, cooled by night effect, run down the hill with a steep pressure 
gradient at the front, this flow act like a tidal bore in a river forming a wave train of 
clouds or a single turbulent cloud at the front. 

Fig 1-6: Morning glory clouds over the gulf of Carpentaria, Australia. 2001 (www.dropbears.com)
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1.3.5. Two dimensional Approach

Observations in the central region of wide open channel show that the flow proprieties 
are essentially the same of a rectangular channel of infinite width. This region exists 
in regular channels only when the width is greater than 5 to 10 times the depth of the 
flow depending on the surface roughness of  the side walls  [35]. Thus, far from the 
wall  and  in  straight  regular  channel,  we  can  treat  the  flow  as  two  dimensional. 
Perpendicular velocity fluctuation can be taken in account in turbulence model. All 
flow proprieties are expected to be conserved along the width of  the channel in the 
central area. It's possible to define all open channel hydraulic quantities for unit width 
for the two dimensional case, for example: 

Q=VA 
Q
b
=q=Vy

F=
Q2

g A
A

y
2


F
b
= f=

V 2 y
g


y 2

2

 

For simplicity, this approach will be imply in evident two dimensional study and small 
letter will be used to indicate related quantities. For numerical studies this approach 
reduces evidently the calculation cost. Three dimensional turbulence can be treated in 
a  numerical  two  dimensional  approach  because  models  try  to  parametrize  all  the 
turbulent  effects.  Hydraulic  jumps  and  undular  bores  can  be  treated  as  two 
dimensional in wide open channel in which side effects and shock waves are confined 
close to the bank and they do not interfere with the central flow (Fig 1-5 and Fig 1-4 
show cases in which a two dimensional approach is appropriate).

1.3.6. Momentum function balance

In hydraulic jumps in an horizontal channels, momentum function have to be the same 
before and after the jump because of the momentum equation. The flow depth before 
the jump is called  initial depth  and after the jump  sequent depth respectively y1 and
y2 (Fig 1-7).  Momentum function equation became 

1V 1
2 A1
g


y1
2

2
b=2V 2

2 A2
g


y2
2

2
b  (1-14)

With some algebra, using some basic equation (see details in Appendix A p.57) and 
considering coefficient 1=2= we have a relation between the initial depth and 
the sequent depth.

y2
y1
=
1
2

18 F 1
2−1   (1-15)

This  equation  can  be  considered  a  necessary  condition  for  the  hydraulic  jump 
formation.  The  relation  between y1 and y2 is  driven  by  the  upstream  Froude 
number, it's therefore considered as a driving parameter because define adimensionally 
the flow. For small Froude number undular jump with smooth oscillating surface is 
observed. Experiments show that the disappearance of free-surface undulation and the 
formation of roller take place in a range from 1.5 to 4 [22] depending on the aspect 
ratio and on three dimensional effects. Increasing F 1 it's possible to assist to a wave 
breaking and the flow form a  roll which is characterized by an air entrainment and 
backward flow at the top of the free surface (Fig 1-2 show a broken wave with a roll on 
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river right). Authors give different threshold for the roll formation because we will see 
that many parameters are involved in the determination of the wave amplitude.   

Fig 1-7: Momentum function plotted against flow depth in a two dimensional channel. Inflow 
Froude number = 1.4 and q= 0.4 m2/s

1.3.7. Undular surge, state of art 

One of the classic paper on the undular jump is Montes (1986) [28]. A recent review 
of the state of art is presented by Chanson [22] and reported here. Chanson present 
also  results  from experiments  and  new considerations  about  the  analogy  between 
stationary and translational undular jump. Analytical theory of the hydraulic jump has 
been studied by Boussinesq [27] and Montes [30]. Important experiment and studies 
about undular jump classification in non-wide channel have been performed and well 
detailed by Chanson  [23]. Positive surge were studied by hydraulicians and applied 
mathematicians for a few centuries. Major contributions included the works of Barré 
de Saint-Venant [3], Boussinesq [31], and more recently Lemoine [33], Serre [17] 
and Benjamin and Lighthill [16]. Several researchers discussed the development of a 
positive  surge  [14][2].  Classical  experimental  investigations  of  undular  surges 
include Darcy and Bazin [26], Favre [25], Zienkiewicz and Sandover [11], Sandover 
and Holmes  [9], Benet and Cunge  [4]. Ponsy and Carbonnell  [6] and Treske  [1] 
presented a comprehensive description of  positive surges in trapezoidal channels of 
large sizes.  Pertinent  reviews  comprised  Benjamin  and Lighthill  [34],  Sander  and 
Hutter  [7] and  Cunge  [8].  Recent  numerical  studies  encompassed  Madsen  and 
Svendsen [13] on the stationary jump, and Caputo and Stepanyants [10], Madsen et 
al.  [12] and El et al.  [5] on advancing bores. Recent studies of  undular tidal bore 
(Chanson [24]) show results of a simple undular jump experiment in order to model 
the undular bore. 
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2. Open channel numerical modelling

2.1. Fluent

2.1.1. Introduction for open channel simulations with Fluent

Fluent  is  a  commercial  general  purpose  fluid  dynamics  simulator.  The  6.3  two-
dimensional  version is  used in all  simulations.  Grid domain can be generated by a 
specific program called Gambit. Fluent accepts unstructured grid and, if  necessary, 
this  feature  permits  easy  refinement  of  the  region  of  interest.  Fluent  provides  a 
multiphase model called  VOF (Volume Of Fluid) allowing multiple phases modeling. 
Thus it can simulate open channel flows using two fluids: air and water. Open channel 
options are available with VOF to model specific condition as constant atmospheric 
pressure  for  the air,  special  outflow boundary and interface reconstruction.  Fluent 
works with mean value in each cell center and uses turbulence model to simulate non 
laminar effects. With Fluent all kinds of post processing are possible and data can be 
exported  easily.   Although  Fluent  can  use  solver  schemes  to  reach  convergence, 
numerical stability is not guaranteed and care is necessary in defining the time step, 
the  grid  resolution  and  the  initial  condition.  A  review  of  all  models  used  in  the 
simulation will be given in next paragraphs. More details are available on Fluent user 
guide manual [18] and Gambit manual. 

2.1.2. User steps for open channel flow simulations 

Fluent, like every numerical simulator, requires few steps to define the problem, the 
model  to  be used,  and all  numerical  parameters.  The steps  can be summarized as 
follows: 

In Gambit

– Definition of the geometry and the mesh 

– Definition of the boundary

In Fluent 

– Import the mesh

– Definition of models and solver parameters

– Definition of boundary conditions and operating conditions

– Initialize the solver with arbitrary initial conditions

– Iterate solver algorithm

– Check the stability of the iterations and save the results. 

Paragraph 3.1. shows detailed options of the model used and paragraph 2.4. shows the 
solver properties.  
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2.2. Generic fluid flow equations 

2.2.1. Variables

Fluent stores all the necessary variables in the center position of  the cells. In  two 
dimensional open channel the necessary variables are 

u ,v fluid velocity

 volume fraction

p  pressure 

k , turbulent kinetic energy and dissipation rate (for a k− model) 

2.2.2. Continuity and momentum equations 

For  all  flows,  Fluent  solves  conservation  equations  for  mass  and momentum.  The 
equation for conservation of mass, or continuity equation, can be written as follows

∇⋅v=0  (2-1)

Conservation of momentum in a inertial reference frame is described by  [19].

∂
∂ t

v ∇⋅v v =−∇ p∇⋅ g  (2-2)

where  is the stress tensor 

= [∇ v∇vT  ]  (2-3)

2.2.3. Transport equation discretization

Fluent uses a control-volume-based technique to convert a general scalar transport 
equation to an algebraic equation that can be solved numerically. This control volume 
technique consists of integrating the transport equation about each control volume Eq. 
(2-4), yielding a discrete equation that expresses the conservation law on a control-
volume basis. Discretization of the governing equations can be illustrated considering 
the unsteady conservation equation for transport of a general scalar quantity  :

∫V

∂
∂ t

dV∮v⋅d A=∮∇⋅d A∫V
SdV  (2-4)

 where

  = density

v  = velocity vector 

A = surface area vector

 = diffusion coefficient for 

S = sources and sinks of  per unit volume

Discretization of Eq. (2-4) is presented in Eq.(2-5) where the value of  is placed in 
the cell center and the value at the volume boundary faces  f is calculated using an 
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interpolation first-order upwind scheme 

∂
∂ t

V ∑
f

N faces

 f v f  f⋅A f=∑
f

N faces

∇ f⋅A f SV  (2-5)

where 

N faces = number of faces enclosing cell 

V = cell volume 

This numerical discretization is not used for the VOF equation. VOF model uses a 
more accurate scheme in order to simulate discontinuous fields like the color function 
which defines the interface between two different fluids (see 2.3.2.).  

This equation contains the unknown scalar variable at the cell center as well as the 
unknown values in surrounding neighbor cells. Thus, Eq. (2-5) will be in general non-
linear. A linearized form must be used with algebraic linear solvers and therefore one 
must solve the above discrete equation in the following linear form   

a P=∑
f

anbnbb (2-6)

where the subscript  nb refers to neighbor cells and aP and anb are the linearized 
coefficients for  and nb . b represents the source term. Similar equations can 
be written for each cell in the grid yielding a set of algebraic equations with a sparse 
coefficient matrix. For scalar equations Fluent solves this linear system using a point 
implicit  (Gauss-Seidel)  linear  equation  solver  in  conjunction  with  an  algebraic 
multigrid method (see 2.4.4.).

2.2.4. Time evolution 

A generic expression for the time evolution of a general variable  is given by 

∂
∂t

=F   
(2-7)

where the F function incorporate all spatial terms. A first order discretization is given 
by the implicit time integration 

n1−n

 t
=F n1

n1=n t F n1

 (2-8)

which yields the equation for the time evolution of the quantities in Eq. (2-8 b). This 
scheme is called implicit since the unknown n1 at the time n+1 in a given cell is 
related through F n1 which is a function of 

n1 itself. This equation can be 
solved iteratively at each time before moving to the next step. The advantage of this 
scheme is that it is unconditionally stable with respect to time step size. This process 
can be controlled by the solver in several ways which are described in paragraph 2.4.. 
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2.2.5. Evaluation of gradients and derivatives 

Gradients are needed not only for constructing values of a scalar at the cell faces, but 
also for computing secondary diffusion terms and velocity derivatives. The gradient 
∇ of a given variable  is used to discretize the convection and diffusion terms 

in the conservation equations Eq.(2-1) and  (2-2). Gradient is computed according to 
Green-Gauss Cell-Based methods. The value of the gradient of a general quantity in the 
cell center ∇c0 is calculated numerically by 

∇c0=
1
∑f

 f
A f (2-9)

where the face value,  f , is taken from the arithmetic average of the values at the 
neighboring cell centers and  is a coefficient.   

2.3. Volume of fluid, VOF

2.3.1. Overview 

VOF model introduces a variable containing the volume fraction of  each phase; the 
sum of all fractions has to be 1. The fields for all variables and properties are shared by 
the phases and represent volume-averaged values, as soon as the volume fraction of 
each  phase  is  known at  each  location.  For  open  channel  simulations  a  very  small 
number  of  cells  are  expected  to  have  both  phases  at  the  same  time  if  no  air 
entrainment is occurring. This approach permits the simulation of  open channels in 
which the geometry of the water flow is unknown a priori and atmospheric pressure is 
maintained at the free surface. Fluent simulates both air and water motions in a wall 
bounded channel. This is not strictly correct because the open channel atmosphere is 
not confined.  Effects of  the upper boundary are however negligible because the air 
motion has weak interaction with water flow. VOF model solves continuity equations 
with the phase variable for the q-th phase: 

∂qq

∂ t
∇⋅qqv =0  (2-10)

Since mass transfer between the phases in open channel can be ignored, the right hand 
side of Eq. (2-10) doesn't have any source terms. 

2.3.2. Geo-reconstruction method

In the geometric reconstruction approach,  standard interpolation schemes are used to 
obtain the face fluxes whenever a cell is completely filled with one phase or another. 
When the cell contains both phases, the geometric reconstruction scheme is used. The 
geometric  reconstruction  scheme  describes  the  interface  between  fluids  using  a 
piecewise-linear approach. It assumes that the interface between two fluids has a linear 
slope within each cell, and uses this linear shape for calculations of the convection of 
fluid through the cell faces. The first step in this reconstruction scheme is calculating 
the position of  the linear interface relative to the center of  each partially-filled cell, 
based on information about the volume fraction and its derivatives in the cell.  The 
second step is calculating the advected amount of  fluid through each face using the 
computed  linear  interface  representation  and  information  about  the  normal  and 
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tangential velocity distribution on the face. The third step is calculating the volume 
fraction in each cell using the balance of fluxes found during the previous step. In open 
channel flows, this interpolation scheme, permits to maintain a solid interface and only 
few cells have a value  different from 0 or 1. 

2.4. Pressure based solver 

2.4.1. Overview of pressure based solver

Fluent has two numerical ways to solve general equations,  pressure based and  density  
based solvers. The pressure-based approach is suitable for  low-speed incompressible 
flows,  while the density-based approach is mainly used for high-speed compressible 
flows. For VOF models, however, only the pressure based solver is available and the 
velocity field is obtained from the momentum equations. In this approach, the pressure 
field  is  extracted  by  solving  a  pressure,  or  pressure  correction,  equation  which  is 
obtained by manipulating continuity and momentum equations. 

2.4.2. Discretization of continuity and momentum equations

Discretization of momentum equation Eq. (2-2) can be done using the same scheme of 
the general transport equation 2.2.3.. For example for the x-momentum the equation 
can be discretized from the pressure field and mass fluxes:

a pu=∑
nb

anbunb∑ p f A⋅iS  (2-11)

However these fields are not known a priori and must be obtained as a part of  the 
solution through a series of correction on pressure and velocity fields. 

Mass conservation equation Eq.(2-1) may be integrated over the control volume to 
yield the following discrete equation 

∑
f

N faces

J f A f=0  (2-12)

where J f=v⋅n is the mass flux through face f .  The computation of  the mass 
fluxes involve pressure and velocity field on the cell faces, therefore it is necessary to 
relate the face values of velocity, to the stored values of velocity at the cell centers. In 
order to relate face and center values one may use a pure linear interpolation scheme. 
The linear interpolation scheme results in unphysical checker-boarding of  pressure. 
Hence, the velocity face values are not averaged linearly but weighted with momentum 
coefficients a P from Eq.(2-11).  Using  this  procedure,  the  face  flux, J f ,  may be 
written as

J f= f vn  (2-13)

where the weighted average normal velocity is 

vn=
a p ,c0 vn , c0a p , c1v n , c1

a p ,c0a p , c1

 (2-14)

The subscripts c0 and c1 are referred to the cells on either side of the face.
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2.4.3. Coupled solver 

The pressure-based solver has a solution algorithm called  coupled solver  (in this case 
the PISO, Pressure-Implicit with Splitting Operators scheme), where the governing 
equations are solved in a coupled way. Since the governing equations are non-linear 
and coupled, the algorithm solves a system of equations which includes the momentum 
equation Eq.(2-11) and the pressure-based continuity equation Eq.(2-12). This solver 
is based on a degree of approximation between the correction for pressure and velocity 
higher  than  for  other  coupled  solver.  The  remaining  equations  are  solved  in  a 
decoupled fashion. The solution loop must be carried out iteratively in order to obtain 
a converged numerical solution. In the coupled solver each iteration consists of  the 
steps outlined below

1.  Update  fluid  properties  (density,  viscosity)  including  turbulent  viscosity 
(diffusivity) based on the current solution.

2.  Solve the momentum equations,  and the pressure correction equation in a 
coupled way.

3. Correct face mass fluxes, pressure, and the velocity field using the pressure 
correction obtained from Step 2.

4. Solve the equations for additional scalars, if any, such as turbulent quantities, 
species, using the current values of the solution variables.

5. Check for the convergence of the equations.

2.4.4. Multigrid method

Fluent  uses  a  multigrid  scheme  to  accelerate  the  convergence  of  the  solver  by 
computing corrections  on a  series  of  coarse grid levels.  The use of  this  multigrid 
scheme can greatly reduce the number of  iterations and the CPU time required to 
obtain a converged solution particularly when the model contains a large number of 
control  volumes.  The  direct  matrix  inversion  is  out  of  the  question  for  realistic 
problems and  solvers that rely on conjugate-gradient (CG) methods show  robustness 
problems associated  with  the solution of  the Navier-Stokes  system.  The numerical 
methods used are the iterative implicit solvers like Gauss-Seidel with preconditioner as 
ILU.  Although  the  Gauss-Seidel  and  ILU  schemes  rapidly  remove  local  (high-
frequency) errors in the solution, global (low-frequency) errors are reduced at a rate 
inversely related to the grid size. Thus, for a large number of nodes, the solver “stalls” 
and the residual reduction rate becomes prohibitively low. Multigrid techniques allow 
global error to be addressed by using a sequence of successively coarser meshes. This 
method is based upon the principle that global (low-frequency) error existing on a fine 
mesh can be represented on a coarse mesh where it again becomes accessible as local 
(high-frequency)  error.  Since  computations  can  be  performed  at  an  exponentially 
decaying expense in both CPU time and memory storage on coarser meshes, there is 
the potential for very efficient elimination of global error. 

2.5. Grid 

Grid domain is defined in Gambit, a specific program for mesh design. For open two-
dimensional channel flows with regular geometry we can use a simple structured mesh 
with  only  two  parameters  measuring  the  grid   in     horizontal   and  in  vertical 
direction.  These  parameters  have  to  be  determined  according  to  the  scale  of  the 
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interesting phenomenon.  We need to define two different characteristic lengths for 
the two dimensions. For example, for two-dimensional wave like undular jump, the 
vertical  characteristic  length  can  be  defined  as  the  wave  amplitude aw and  the 
horizontal one can be the wavelength Lw . We can define an adimensional quantity 
to correlate grid resolution  xi and length scale L

i=
Li

 x i

 (2-15)

The index i is referred to the dimension which can be, in two-dimensional geometries, 
horizontal or vertical. The evaluation of  the minimum value of  is  shown in the 
sensitivity analysis in 3.2.1..  

A scale of the vertical wave amplitude can be estimated as follow

aw≈ y2 – y1   y≈
aw

v

 (2-16)

However, aspect ratio of  cells has to be limited, especially in our VOF model. Thus 
special constrain must be applied in order to have a good quality mass transfer at the 
interface. Therefore we need to have aspect ratio less than the free surface steepness 
shown in  Eq.(2-17).  In  the  undular  jump,  for  example,  we  can  estimate  the  wave 
steepness as follow

S≈
Lw

2aw

 

 x
 y

S

(2-17)

This constrain is more restrictive, thus horizontal resolution has to be

 xS
aw

v

 (2-18)

In the undular jump standard experiment S is approximative 5:1 but we will use a 
conservative value or 3:1 for the determination of the grid resolution. This yield that 
only v have  to  be  determined  in  the  sensitivity  analysis.  Inside  the  commercial 
program  Fluent,  the  refinement  of  the  ROI  (free  surface  and  channel  bottom)  is 
possible in order to increase the precision of the interface and the near wall treatment. 

2.6. Standard turbulence model

The standard model k -    for  momentum equation closure is  applied.  This  model 
assumes isotropic turbulence. Transport equations for turbulence kinetic energy k
and rate of dissipation of kinetic energy  , which  are valid mainly in the turbulent 
core flow,  are solved. The turbulence equations can be written as

∂
∂ t

 k  ∂
∂ t

k ui =
∂
∂ x j [


 k 

∂ k
∂ x j ]G k− (2-19)

and 
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∂
∂ t

 ∂
∂ x i

ui=
∂

∂ x j
[t


 ∂∂ x j

]C 1

k
Gk −C2

2

k
 (2-20)

In these equations, G k represents the generation of turbulence kinetic energy due to 
the mean two dimensional velocity gradients 

G=2 [ ∂u∂ x ]
2

[ ∂ v∂ y ]
2

 ∂u∂ y

∂ v
∂ x 

2

 (2-21)

 k and  are  the  Prandtl  number  for k and  and t is  the  turbulent 
viscosity computed by combining k and  as follows

t=C 
k 2


(2-22)

Standard coefficient are used

C =0.09
C1=1.44
C 2=1.92
 k=1.0
=1.3

 (2-23)

Turbulence  kinetic  energy k and rate  of  dissipation of  kinetic  energy have to  be 
defined manually on the boundary such as the velocity inlet and pressure outlet. An 
estimation of k and  for boundary and initial conditions it  is  possible from the 
turbulent intensity I [18] which can be estimated from direct measurements in real 
channels

I≡
v '
V

k=
3
2

V I 
2

=C 
3 /4 k 3 /2 l−1

 (2-24)

where V is  the  mean  velocity, v ' is  root-mean-square  of  the  unidimensional 
velocity fluctuations, l is the turbulent length scale that can be approximated with

l=0.07 yc  (2-25)

2.7. Wall functions 

To simulate no-slip conditions and turbulent effects, Fluent provides wall functions 
that complete the standard turbulence model in regions close to walls.  For undular 
jumps,  walls  are  the  major  turbulent  source  and  therefore,  is  really  important  an 
accurate simulation in this region. Numerous experiments have shown that the near-
wall region can be largely subdivided into three layers. In the innermost layer, called 
the “viscous sublayer”, the flow is almost laminar, and the (molecular) viscosity plays a 
dominant role  in  momentum transfer.  In  the outer  layer,  called  the fully-turbulent 
layer, turbulence plays a major role. Finally, there is an interim region between the 
viscous sublayer and the fully turbulent layer where the effects of molecular viscosity 
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and turbulence are both important  [18]. Fluent wall functions simulate these three 
layers according with the grid resolution and k ,  , mean velocity are all taken care 
of by these functions. Roughness effects are not simulated by standard wall functions 
thus, the walls are smooth.
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3. Undular jump simulation

3.1. Numerical modelling  

3.1.1. Introduction to undular jump simulation

Undular jump simulation aims to reproduce the well known phenomenon with Fluent 
(see  1.3.2. for  definition).  In  an  horizontal  channel,  a  supercritical  flow  becomes 
subcritical making stationary waves, an undular jump (sketch in Fig 3-1). With these 
simulations we want to validate the model and perform systematic sensitivity analysis. 
Upstream and downstream free surface depths must follow Eq.(1-15) for momentum 
function balance. In order to compare the simulations with experimental data, we set 
the upstream Froude number equal to 1.6. We assume that the undular jump is a two 
dimensional  phenomenon  thus  we  work  with  a  two  dimensional  grid  placed  in  a 
vertical longitudinal section ideally in the middle of a wide channel. Numerical grid 
cover the main part of  the undular phenomenon, approximatively three wavelength, 
and a little part of the supercritical inflow. In a real channel, the flow transformation 
from supercritical  to  subcritical  can  happen in  different  ways  farther  downstream. 
Fluent can simulate a downstream boundary with a pressure condition that simulate a 
flow with a subcritical depth (see 3.1.5.). In paragraph 3.2.2. we perform an analysis on 
the placement of the grid domain to exclude any dependence of the solution. Even if 
really realistic and detailed conditions can be used, we always prefer  simplicity if  the 
results are comparable. Thus, conditions ensemble has to reproduce real experiment 
and has to be as simple as possible at the same time. Detailed analysis of necessary 
complexity introductions are showed below.  

Fig 3-1: Open channel sketch with undular jump. Dark surface indicate grid domain. Dotted line 
indicate reference system.  

3.1.2. Operating conditions

In Fluent,  operating conditions  are gravity  and atmosphere effects.  Gravity  is  on,
g=9.81m/s2 downward direct and the pressure is the standard at the the sea level 
p0=101325 Pa . We must also define an operating density for the gas phase because 

temperature is not a variable of the model. It's therefore fixed at the average value of 
air at sea level 0=1.225 kg /m

3 . Fluent use a redefined pressure as 

p '= p−p0−0g y  (3-1)

Thus, quiet air in the channel has a p '=0 and quiet water has a vertical hydrostatic 
pressure profile.
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3.1.3. Boundary: velocity inlet 

Inlet boundary conditions are fundamental for the definition of the problem.  Fig 3-2 
shows velocity inlet placement in the grid domain. The velocity inlet has a fixed hight 
that  is  about  a  third  of  the  channel  hight  and only  water  come  out  with  normal 
velocity. The simplest choice is a vertical constant velocity profile. Constant velocity 
however does not yield a simulation of the undular jump (see 3.4.1.). Thus, in order to 
simulate a more reliable fully develop profile, we use Eq.(3-2). 

V  y =V max  y
ymax 

1
N  (3-2)

Fluent requires a special user define function “udf” wrote in c++ language to define an 
arbitrary profile (see  Appendix B). Experiments show that N can vary from 6.9 to 
8.8 for smooth wall regular channels  [23]. Using this profile, momentum coefficient
 , can be calculated from Eq.(1-5) and become

=
 1N 1

2

 2N 1
(3-3)

For value of N in the range from 5 to ∞ , the coefficient will be approximated to 
unit. Out of this range, the approximation can't be done and we need to consider this 
coefficient  in  the  momentum  function  balance  equation.  In  paragraph  3.4.1. we 
perform sensitivity analysis to study the affection of N variations. 

3.1.4. Boundary: turbulent inlet quantities 

Turbulent kinetic energy and turbulent dissipation rate have to be defined at the inlet. 
As  a  first  approximation we define  a  null  turbulent  intensity  and leave the model 
creates turbulence from shear and vorticity of the flow. We use this option if nothing 
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else is indicated according with the simplicity criteria. This option will be compared 
with a fully turbulent flow according with experimental data in paragraph 3.2.3.. The 
affection of the turbulence is not negligible if large amount of energy are involved as 
we will see in paragraph 3.4.2.. 

3.1.5. Boundary: pressure outlet

Pressure  outlet  is  the  other  key  boundary  for  undular  jump  simulation.  Fluent 
provides a special pressure outlet specific for open channel flow that requires the free 
surface height from the channel bottom. This boundary is placed along all the right 
wall (Fig 3-2) and is in contact with both phases. Static pressure at the boundary, for 
subcritical flow, is determined as follow

p '  y =−0∣g∣ y− y fs  (3-4)

where y fs is the free surface position and p ' is the redefined pressure (see 3.1.2.). We 
will  set  in  all  simulations  the  free  surface  position  at y2 in  order  to  simulate 
subcritical  flow  according  with  momentum  function  balance  Eq.(1-15).  If  static 
pressure next to the boundary is less than the fixed one, revers flow of gas phase with 
normal direction can occurs. In steady condition reverse flow under the flow depth 
doesn't occur because the pressure at the boundary results equal to the required one. 
This boundary doesn't fix the free surface but only creates a pressure that make this 
happen, so it's not a direct constrain for free surface undulations. Ideally this boundary 
have to be placed far from the jump, where undulations are attenuated. For calculation 
cost reason it will be placed closer, approximatively 3 wavelength from the jump. The 
analysis of this problem shows that effects are negligible in paragraph 3.2.2..  

3.1.6. Standard channel

Now,  we  can  define  few  parameters  to  create  a  standard  channel  to  use  for  all 
simulations that yields the undular jump phenomenon. This standard channel will be 
the  simplest  as  possible  to  reproduce  an  undular  jump  with  Froude  number 
comparable  to  the  experimental  data  of  Chanson  (2005)  [24].  We  will  perform 
variations  to  some  of  these  parameters  to  study  sensitivity.  Without  specific 
indications, numerical simulations use standard channel.

Flow:
- Froude number: 1.6
- critical depth: 0.276 m 
- critical velocity: 1.65 m/s
- discharge: 0.456 m2/s

Grid domain: 
- dimensions: 6 m long and 0.6 m high 
- resolution: defined in each simulation 

Boundary: 
- velocity inlet: 0.2 m high from the bottom, mean velocity = 2.28 m/s, velocity profile 
following Eq.(3-2); null turbulence kinetic energy and dissipation rate
- pressure outlet: 0.6 m high; free surface level = 0.37 m ; return flow with null 
turbulence kinetic energy and dissipation rate

We expect scale invariance, thus all length will be compared with the characteristic 
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quantities of the flow (critical depth or critical velocity). 

3.2. Model validation 

In this section we want to perform some test to validate the model and ensure that the 
result doesn't depend upon arbitrary choice made in the definition of  the numerical 
model  parameters.  We want also to compare the simulations results with a similar 
experiment in real channel.  

3.2.1. Grid sensitivity 

Grid resolution is probably one of the most critical numerical parameter in the VOF 
simulations.  The model  doesn't  resolve turbulence fluctuations  and thus  they don't 
represent  a  big  issue  in  determining  the  grid  resolution.  Wall  functions  require 
conditions for the wall adjacent cells to perform reliable results that are in general 
respected in the simulations performed in this work. Thus, the only issue seems to be 
represented by  the  phenomenon scale  that  must  be  well  resolved by  the grid.  We 
already discussed how the length scale can be found for the undular jump and which 
other  constrains  we  need  to  take  in  account  (see  paragraph  2.5.).  However  the 
minimum number of points for length scale must be determinate with systematic tests 
on the model. Therefore in this paragraph we perform a systematic sensitivity analysis 
to determinate only the vertical grid resolution v since the horizontal is given by 
Eq.(2-17). We now define a set of resolutions and we test them with the same models 
and boundary conditions and keeping the aspect ratio always 3:1.  Fig 3-4 shows the 
free surface data simulations for the different resolutions. To compare the data, we 
have performed a x-offset in order to superimpose the first crest. As introduces so far, 
after  a  fast  visual  analysis  we  can  conclude  that  grid  resolution  is  a  fundamental 
parameters for VOF simulations. Under a certain threshold, we can estimate around
v20 ,  the  results  are  poor  and  not  reliable  because  wave  attenuation  is 

overestimated and free surface undulations are not resolved with enough points. Over 
this threshold the results are more reliable and the undular jump characteristic can be 
recognized.  Free  surface  appears  closer  to  experimental  data  and  a  resolution 
increment doesn't yield big changes in the results. 

In  order  to  give  a  quantitative  analysis  of  this  behavior,  we can  define  a  distance 
between the free surface profile and the ideal one. We take the higher resolution profile
v=85 as reference and the distance can be defined as follow: 

d 85=
∑
i=1

N

 yi− y 85
2
1
2

N aw

 (3-5)

where yi represent  the  ith value  of  the  free  surface  profile  and  the  subscript  85 
identify the linear interpolation of the higher resolution free surface profile over the x 
coordinate  of  the  coarse  resolution. N is  total  number  of  points  in  the  coarser 
resolution and aw is the wave amplitude.

Fig 3-3 shows the normalized distances defined by Eq.(3-5) over the grid resolution. 
As we can see,  after a threshold,  the distance is stable on a fixed value.  Over this 
threshold the model doesn't converge uniformly into a single solution. The solution is 
not an attractor and small differences in the algorithm yield small differences in the 
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solution. This means that improving the resolution over this threshold, with increase 
of  calculation cost, could not yields significant quality improvement of  the solution. 
Thus, we can say for the undular jump simulation v has to be bigger than 20.

 Fig 3-3: Distance between free surface profile of v=85  and different resolutions 
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Fig 3-4: Free surface data comparison. Different colors indicate 
different resolutions  
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3.2.2. Outlet sensitivity 

Pressure outlet boundary ideally has to be placed far from the wavy section of  the 
simulation to  avoid  numeric  artifact.  In  subcritical  flows,  downstream boundary  is 
responsible  of  the  undular  jump  formation  and  its  role  is  fundamental.  For 
computation cost reasons, we cut the grid domain after 3 wavelength. Thus, we need 
to demonstrate that this choice doesn't affect significantly the simulation result. Fig 3-
5 shows free surface profiles for identical simulations except for the domain length. 
The extended domain ends where weave amplitude reaches the grid resolution and the 
standard domain ends after  3 wavelength according with the standard model.  The 
results are similar but at the end of the standard domain little differences are visible 
and the wave amplitude is  weakly attenuated.  The outflow boundary can therefore 
interferes with the solution but the differences are comparable with grid resolution 
except that in a region next to the boundary in which we can't consider the results 
reliably. Therefore a short domain is preferred for the smaller computation cost.   

3.2.3. Turbulent inlet sensitivity

We want now to make sure that the null turbulence simplification doesn't affect much 
the simulations result.  Thus we compare a null turbulence simulation with a more 
realistic  turbulent  profile  derived  from experimental  data.  Chanson  and  Brattberg 
(1997,2000  [20],[21])  performed  experiments  for  fully  turbulent  condition  in  a 
horizontal channel without hydraulic jump. We assume that turbulent intensity is not 
affected  strongly  by  the  Froude  number.  Tab  1 shows  turbulent  intensity I
measurements. 
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Fig 3-5: Free surface comparison  between a short and a long domain. Fr=1.6; Res v=21 ; 



From  Tab 1 data we calculate a linear interpolation for I profile (Fig 3-8) and we 
define a function Eq.(3-6) that gives the turbulent intensity for a fully develop flow as 
follow

f I  y
ymax = p0 p1 y

ymax 
p0=8.1 p1=7.7

 (3-6)

Using Eq.(3-6), Eq.(2-24) yields the profiles for turbulent quantities 

f k  y =
3
2
V f I  y 

2

f  y =C
3 /4 l−1  f k  y 

3 /2
 (3-7)

These functions are implemented for Fluent use in Appendix B in the udf file.   
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Tab 1: Experiment by Chanson and Bratteberg (1997,2000).  
Are indicated turbulent intensity measurement and channel  
conditions

I

0,014 m
q = 0,033 (%)
b = 0,25 m 0,12 7,76
Fr = 6,3 0,19 7,34

0,26 6,36
0,33 4,61
0,40 4,5
0,48 4,93
0,55 2,71
0,62 3,91
0,69 2,23
0,76 2,74
0,83 2,44

y/y
max

y
max

= v
x
'/V

m2/s



Fig 3-6: Linear interpolation of experimental data to define a vertical turbulent intensity profile
 

Fig  3-7 shows  a  comparison  between  a  null-intensity  turbulent  profile  and  the 
experimental profile defined by Eq.(3-6). The differences of the free surface profiles are 
not significant and can be, at this level, neglected. Turbulent kinetic fields show also 
that k for  the  experimental  profile  has  the  same  order  of  magnitude  of  the  one 
produced in the turbulent core when no turbulence is provided at the inlet. Values of
k− in the flow core are substantially the same. Analysis of velocity and pressure 

profiles give similar negligible differences. Thus, differences are small between these 
two simulations and according with the simplicity criteria the null turbulence profile is 
preferable for simulations as turbulence at the inlet is not a necessary condition for the 
undular jump formation. 
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3.2.4. Undular jump experiment 

A comparison with a real experiment is now essential. Undular jump experiments have 
been  performed  from  different  authors.  Unlucky  we  haven't  found  the  perfect 
experiment without three dimensional effect involved. Thus, we take the closest to our 
numerical simulations. It's important to note that the numerical simulations have been 
performed before and independently form the knowledge of the experimental results. 
In numerical model, Froude number only have been tuned to permit the comparison 
with the experiment data. The closest experiment has been done by Chanson (2005) 
[24] for studies about undular tidal bore sediment transport in estuarine.  For this 
study the author use a stationary undular jump experiment to study bottom stress. We 
are interest in free surface and various profile data of  the experiment called “HQ2”. 
Experiment main parameters are shown below:

Undular jump:
- Froude number: 1.57
- channel width: 0.5 m 
- critical depth: 0.11 m 
- critical velocity: 1.02 m/s
- discharge: 0.055 m3/s (0.11 m2/s)

Boundary: 
- velocity inlet: 0.08 m high from the bottom, low turbulence kinetic energy, mean 
velocity =1.37 m/s

The channel has an aspect ratio of  about 5. Thus three dimensional effects cannot be 
forgotten. The central section of the channel is taken as the most representative of a 
two dimensional flow for comparison. Inflow condition was controlled by a vertical 
sluice gate and downstream conditions with a far dam (Fig 3-8). 
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Fig 3-7: Free surface profile for different turbulent inlet. Res v=17;



Fig 3-8: Experiment sketch 

Standard channel for numerical simulation (3.1.6.) represent these conditions with for 
a scale factor of  about 2.5.  Comparison with such scale factor demonstrate a scale 
invariance at the same time. 

3.2.5. Free surface data comparison 

Fig 3-9 shows free surface data for numerical model and real experiment (see 3.2.4.). 
An  x-offset  has  been  performed  to  overlap  horizontally  first  wave  crest.  The free 
surface  shapes  are  really  close  and  wavelength  and  wave  amplitude  are  simulated 
correctly especially in the first two waves. At the end of  the grid domain there are 
bigger differences in longitudinal placement of the free surface. This effect might be 
caused by the numerical boundary (see 3.2.2.) but also from side boundary layers that 
necessarily occur in a real lateral bounded channel and interfere with the central flow. 
This comparison shows a good agreement and also that a two dimensional analysis can 
be useful in order to simulate regular channels.   

Fig 3-9: Free surface profile comparison between standard Fluent simulation and experimental 
data. Res v=85  
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3.3. Undular jump fields

3.3.1. Velocity fields 

Numerical  model provides velocity fields for the whole channel.  A strong gradient 
characterize the interface between the phases, making easy the identification of the free 
surface.  Velocity  field  for  x-velocity  (Fig  3-10)  permits  to  identify  clearly  the 
recirculation bubble underneath the first crest. This zone has a low, or slightly negative, 
horizontal velocity acting like a solid boundary. The gradient between the main flow 
and  this  zone  is  strong  and  is  a  powerful  source  of  vorticity  and  turbulence. 
Recirculation zones are also visible under the successive crests, even if their behavior 
become weaker moving downstream. The organization of the flow in a solid stream is 
evident and maintained through the waves. Turbulent dissipation effect tends to break 
this organization moving downstream. Velocity field for y-velocity (Fig 3-11) gives a 
clear idea of the undular features and of the attenuation.  

Fig 3-10: x-velocity (m/s) field. Res. =85

Fig 3-11: y-velocity (m/s) field. Res. =85

3.3.2. Static pressure profiles

Free surface curvature has a strong affection on static pressure vertical profiles. In 
open channels, where the surface is straight, the pressure profile is superimposed to 
the hydrostatic one (Fig 3-12). Vertical pressure profile, in convex curvature with the 
center in the water, is lower than the hydrostatic (Fig 3-13 and Fig 3-15). In reverse, 
concave curvature has a larger pressure than hydrostatic (Fig 3-14). This is due to the 
total  energy  conservation  law  (see  [35] for  details).  Experiment  data  for  all  the 
vertical profiles showed in Fig 3-12, Fig 3-13, Fig 3-14, Fig 3-15 seem to follow more 
or less closely the simulations. Upstream hydrostatic profile is simulated better than 
any other because depend only upon the upstream conditions. Successive profiles, like 
the free surface data, have small differences due probably to three dimensional effects 
or differences in inflow conditions.  
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Fig 3-12: Pressure profiles for upstream flow (velocity inlet). Res v=34

Fig 3-13: Pressure profiles, top of the first crest  Res v=34

39



Fig 3-14: Pressure profile, bottom of the first trough Res v=34

Fig 3-15: Pressure profile, top of the second crest, Res v=34

3.3.3. Vorticity field

Numerical simulation for standard channel yields vorticity field in Fig 3-16. At steady 
state,  the  vorticity  is  created  underneath  the  first  wave  crest  in  the  recirculation 
bubble. In this zone, the fully develop boundary layer is detached from the channel 
bottom  and  the  consequent  shear  is  identified  by  the  large  presence  of  vorticity. 
Downstream the  first  crest,  the  vorticity  tends  to  decreases  along  the  channel  to 
recreate  a  developed  turbulent  flow.  The  friction  between  the  two  phases  at  the 
interface is also a small and negligible source of vorticity but still visible in Fig 3-16. 
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Fig 3-16: Vorticity field (1/s). Res: v=34

3.4. Undular jump sensitivity analysis

In next paragraphs we want to study how the undular jump is sensitive to the inlet 
conditions. We also try to fix a thresholds over which the wave breaks and the flow 
turns upstream with foam formation and air entrainment. We refer to this threshold as 
critical because over it, the flow forms a completely different pattern, the direct jump. 

3.4.1. Velocity inlet profile 

Upstream conditions,  above  the  numerical  domain,  determine  the curvature  of  the 
velocity profile at the inlet boundary. Therefore, in the numerical model, we need to 
define arbitrarily the inlet conditions. In regular and straight channels, friction with 
the bottom creates a  steady vertical  shear that  can be approximated with Eq.(3-2) 
reported below: 

V  y =V max  y
ymax 

1
N  (3-2)

The profile at the inlet may changes with respect to bed roughness or any other source 
of  turbulence.  In this  paragraph, we want to understand how the curvature of  the 
profile  modify  the  undular  free  surface.  Therefore  we  run  different  simulations 
modifying the coefficient N and keeping constant the resolution and the standard 
conditions. Under a certain N value, the approximation of  coefficient to unit it's 
not acceptable anymore and we need to recalculate the pressure outlet level to keep the 
momentum function balance.  For example,  in a  simulation for N=3 the pressure 
outlet has been recalculate and thus the results are not directly comparable. Increasing
N , the wave steepness increase until and over a critical threshold, the wave reach 

the critical state and become a direct jump. We have simulated an undular jump with
N=11 keeping the solid interface and with an high degree of instability (see 3.4.4.), 

but over this value only direct jump have been found at steady state. Thus, to better 
understand  the  sensitivity  to  the  velocity  profile,  we  want  to  study  the  range
5≤N≤10 in which the standard conditions can be used and the steady state has a 

solid surface. Fig 3-17 shows the profiles for different N values that has been used in 
the simulations to give an idea of the profile shapes.  Fig 3-18 shows the free surface 
profiles  for  the  simulations  in  the  non-critical  range.  As  we  can  see,  the  wave 
amplitude  increase  incrementing N while  wavelength  decrease.  Thus,  wave 
steepness increase if the profile has less curvature. This feature is consistent with the 
existence  of  an  upper  threshold  of N over  which  the  wave  breaks  because  the 
steepness overtake the critical value. This analysis is however related to the standard 
conditions and we can't generalize the thresholds. 
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An experiment performed on small Froude number (Fr=1.2, N=20), has shown that 
for  large N value  the  wave  tends  to  break  anyway  even  if  the  expected  wave 
amplitude  is  small.  This  behavior  may  suggest  that  the  smooth  undular  jump  is 
maintained  through  the  flow  organization.  If  the  velocity  inlet  profile  is  already 
organized with a good vertical shear, the formation of  the smooth surface is easier. 
Instead, if  the profile is not vertical organized, the flow tends to go underneath the 
slower subcritical flow yielding the formation of  a direct jump. Thus, the threshold 
may varies  with the Froude number but  a  detailed evaluation needs to be done in 
future studies. 

Fig 3-17: Velocity inlet profiles for different N following Eq.(3-2)
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Fig 3-18: Free surface profiles for different N value. Res v=34  



3.4.2. Turbulent kinetic energy 

At the inflow, turbulent kinetic energy has to be determined from upstream streaming 
conditions.  For  example,  a  smooth  regular  straight  channel  must  have  a  lower 
turbulent intensity than a rocky river bed with same mean velocity. The problem is 
how the turbulent upstream conditions, without modifying the inlet velocity profile, 
can affect undular jump. Experiments in order to study this issue, are difficult to set 
up.  Some experiment  performed with  rough walls  were  performed by  CHANSON 
(1994)  [23]. He concluded that wall roughness, and thus turbulence, affects undular 
jump velocity field and the free surface in a not trivial way. Numerically working, this 
analysis is quite easy to perform, we can test five different turbulence inlet to study 
sensitivity.  Considering  Eq.(3-7)  that  relate  the  turbulent  intensity  to  the  other 
turbulent quantities,  five vertical  profiles  for k and  are obtained from a set of 
multipicator  coefficient  (see  Eq.(3-8))  using  the  experimental  turbulent  intensity 
profiles function f I defined in Eq. (3-6). 

c I f I  y  with c I=0,1,2 ,3 ,4  (3-8)

Leaving all other parameters constant at the standard conditions, the model simulate 
undular jump for c I=0,1 ,2 ,3 . For these values, the higher is the turbulence at the 
inlet, the higher is the wave amplitude (see Fig 3-19). With higher turbulence, c I=4  
the critical state is reached yielding a direct jump. 

Differences in inlet turbulence substantially change k field along the channel (Fig 3-
20). As showed in  Fig 3-20, in the first part of  the channel a large fraction of  the 
incoming turbulence is dissipated because no turbulent sources are present. However, a 
consistent  part  of  turbulence  reaches  the  main  part  yielding  different  flow 
organizations and modifying the free surface profile. At reverse, when no turbulence is 
supplied at the inlet, turbulence sources exist just under the first crest when the main 
flow is detached from the channel bottom and velocity shear is strong. Thus, high 
turbulence yields more instability for the smooth waves. Kinetic energy is therefore a 
parameter  with  a  critical  threshold  over  which  the  wave  instability  can  be  found. 
However, it's possible to reach this critical threshold only with high turbulence level, 
around four time the turbulence of a smooth channel. 

44



Fig 3-19: Free surface profile comparison with different turbulent inlet profiles

Fig 3-20: k fields along the channel respectively for cI=0 and cI=3. Color scale is the same for both 
fields and goes form k= 0 to k= 0.02, black color means out of scale.  

3.4.3. Froude number 

The upstream Froude number is the characteristic parameter to define the intensity of 
the  phenomenon.  For Fr=1 the  flow  is  critical  and  no  undulations  occurs.  If
Fr1 the inflow turns from supercritical to subcritical, therefore a positive surge 

occurs. The amplitude of the waves is expected to increase with Fr because depends 
somehow  from  the  difference  between y1 and y2 .  We  expect  also  an  upper 
threshold where the wave breaking occurs and the undular jump turns suddenly in a 
direct  jump.  After  several  simulations  we have  identified  the  characteristic  Froude 
number  undulations  disappearance  at Fr=1.9 for  the  standard  channel.  Others 
authors  agree  that  this  threshold  is  placed  in  a  range  from  1.5  to  4  [24] with 
dependency on the aspect ratio of the channel. After the studies on the velocity inlet 
profile and on turbulent kinetic energy (see paragraphs  3.4.1. and  3.4.2.),  the large 
degree of uncertainty on the determination of the threshold could be explained by the 
fact that the undular jump is strongly influenced by the inflow conditions, and in real 
channel, from lateral effects too. Therefore, we need to associate to this threshold for a 
wide  channel,  the  velocity  and  the  turbulent  kinetic  energy  profiles;  in  this  case 
velocity profile is defined in Eq.(3-2) with N=7 and no turbulent kinetic energy at 
the inlet (standard channel). 

Fig 3-23 shows all the free surface profiles for the simulations performed in the range 
from 1.3 < Fr < 1.9. We observe that wave amplitude increase with increasing Froude 
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number while wavelength decrease. Fig 3-21 pinpoints that dimensionless wave length 
slightly decreases with differences encompassed in a 10%.  Fig 3-22 shows how wave 
amplitude increases  almost  linearly with  Froude number.  The comparison of  these 
results  with  the  Boussinesq  analytic  solution  haven't  yielded  any  satisfactory 
approximation of the behavior of wave characteristics. This two quantities have been 
studied from different authors in real experiments (see review at [22]) but the results 
are spread and don't identify a clear behavior. We think that the experimental data 
spread can be explained again with the dependency from the inflow conditions.  

Fig 3-21: Dimensionless wave length from first to second crest. N=7 Res: v=21
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Fig 3-22: Dimensionless wave amplitude. N=7 Res = v=21



Fig 3-23: Free surface profiles for different Froude numbers. 
Res: =21
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3.4.4. Instability for critical waves

Complex  system and  numerical  simulation  can  sometimes  show bifurcations.  This 
means  that  different  steady  solutions  can  be  found  with  slightly  different  initial 
conditions but same boundary conditions. During numerical simulations we observed 
that wave breaking sometime occurs and can be a steady alternate solution of a stable 
and smooth wave train (see Fig 3-24 and Fig 3-25). Wave breaking involve water flow 
turning upstream with formation of foam and air entrainment. The final steady state is 
basically a direct jump. However, foam can be not resolved properly by the grid and 
the simulation is not quantitatively realistic even is it look somehow similar to the real 
one. With some perturbation at the model, the alternate solution can be avoided if 
occurs and a stable wave train can be simulated. In all studies performed in this work 
we have always looked for the smooth steady state when possible. The instability is 
observed more often when the wave amplitude is great or we are close to the critical 
state. 
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Fig 3-25: Phase field of a broken wave as alternate solution of Fig 3-24, Res v=34

Fig 3-24: Phase field of a smooth undular jump for N= 10, Res v=34



In real waves, a similar instability can be observed when wave steepness reaches a 
critical  value.  Little  modifications  of  the  channel  bed  or  discharge  changes,  can 
suddenly  modify  the  appearance  of  the  positive  surge.  Moreover,  the  turbulent 
perturbation of the flow could yields a sort of non-periodic cycle in which the wave 
brakes and become smooth again.  The foam formed by the wave breaking, needs a 
good  perturbation  to  be  eliminated,  this  means  that  in  low  turbulence  flow,  like 
artificial channel, if foam is formed, is harder to see such cycle. Our numerical model 
can't simulate this cycle because no velocity inlet perturbation are involved, but when 
critical conditions occur, the instability of the numerical solution is an index of this 
bifurcation. 
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4. Conclusions

4.1. Undular jump 

4.1.1. General considerations

The model,  applied to the undular jump, shows reliable results  and thus is  able to 
simulate  such  class  of  near  critical  flow  phenomena.  The  comparison  with  the 
experimental data (Chanson 2005) demonstrates the scale invariance and the validity 
of a two dimensional approach. Scale invariance in the turbulent range is well known 
in fluid dynamic and allows us to make numerical studies without relate them to the 
scale. Using the critical depth as length scale, the results of  the simulations can be 
superimpose with the experiment data with a scale factor of 2.5. The two dimensional 
approach verifies that undular jump is a proper two dimensional phenomenon and that 
the lateral boundary effects in real channels are not responsible of the undular jump 
formation.  The  good  results  of  the  simulations  also  demonstrate  that  hydraulic 
momentum balance equations Eq.(1-15) can be applied in the numerical model because 
boundary conditions have been defined following this equation. 

Outlet conditions are in general a critical issue in the simulation of a subcritical flow. 
Upstream propagation of numerical error or strong influence of the outflow boundary 
could be found. Moreover, in steady solution reverse flow of the gas phase must occurs 
in the upper part of this boundary to balance the outflow carried by the surface friction 
with liquid phase. Considering all these numerical critical issues, pressure outlet, with 
open  channel  options,  worked  well  in  all  simulations  and  we  haven't  found  any 
problem. To decrease computation cost, we also placed the boundary in a wavy region 
(about 3 wavelength from the first crest) and a specific test showed the small influence 
of this choice. 

The sensitivity analysis over the parameters of the model, as the grid resolution or the 
placement of the outflow boundary, yield that the simulations are sensible to any little 
modification but the differences are confined in an acceptable range of accuracy. This 
kind  of  sensitivity  on  physical  parameters  of  the  inflow boundary  have  also  been 
studied. Small changes of the turbulent intensity and velocity curvature profile yield 
small differences in numerical results. This behavior is consistent with real channel 
because any small difference in boundary conditions yield modification of the flow. In 
example, waves in natural rivers with constant discharge, can slightly change during 
the time because of small modification of the river bed due to erosion or deposition of 
material. 

4.1.2. Necessary parametrized models

In Fluent, in order to simulate all fundamental fluid dynamic physics processes, we 
need to use few parametrized model in addition to the general fluid equations:

– Standard k− turbulence model

– Wall functions

– Geometric interface reconstruction

These models, with the standard fluid equations, yield reliable results comparable with 
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experimental data. 

4.1.3. Sensitivity

Waves created by the undular jump can be described using the wave length,  wave 
amplitude,  velocity  field,  turbulent  fields  etc...  These characteristics  depend on the 
boundary conditions, in specific, the velocity inlet and the pressure outlet. During this 
work and using as reference the  standard channel  (see  3.1.6.),  we have found two 
dependencies from the inlet conditions summarized below.

– The velocity profile curvature has a relevant task in the organization of  the 
flow in the downstream waves. We found that large vertical shear yields an 
easier  organization in  order to have a smooth undular jump.  In reverse,  an 
almost constant velocity profile tends to form a direct jump or waves near the 
critical threshold. 

– Turbulent energy supplied at the inflow, tends to break the organization of the 
velocity. This yields that high turbulent energy increase the wave amplitude 
and a critical threshold has been found. 

These considerations show how the formations of the undular jump is related to the 
organization of the inflow. Strong vertical shear, associated here with an high degree 
of organization, make wave formation easier. Turbulence instead tends to decrease the 
degree  of  organization  and  thus  make  the  wave  formation  harder.  Natural  rivers 
present in general strong vertical shears due to the high friction with the irregular 
bed. This could be the reason why waves occur frequently in high roughness river bed.

4.1.4. Essential physical conditions

Few boundary conditions are necessary to simulate an undular jump in a horizontal 
channel with an upstream Froude number of 1.6 :

– Velocity inlet profile has to be in the range defined by the threshold found in 
paragraph 3.4.1..

– Turbulence at the inlet has to be null or in the range defined in paragraph 
3.4.2.

– Downstream free surface level must follows Eq.(1-15)

If  this conditions are verified, we expect the undular jump formation. Experimental 
studies in wide channel should be performed to verify these conditions. 

4.1.5. Wave characteristic, dependencies from Froude number

In the studies on the wave characteristic dependencies from the Froude number (see 
3.4.3.) we have identify two clear behaviors increasing Froude number from 1.3 to the 
critical threshold 1.9: 

– Wavelength slowly decreased 

– Wave amplitude significantly increase with an almost linear relation  

Since we believe that the dependency from inflow parameters can't be disregarded, we 
haven't  defined  any  quantitative  relations  between  wave  characteristic  and  Froude 
number but we have identify two qualitative behaviors that we can expect for all inflow 

52



conditions in the non critical ranges.  

4.2. Applicability of the model to open channel studies

4.2.1. Applicability fields

Fluent model defined in paragraph 2.2. can be used to study open channel with near 
critical flows. The validation with the undular jump simulations has shown positive 
results  and  this  tool  is  ready  to  be  used  for  similar  phenomena.  However  some 
restriction to the applicability field has to be done and, out of it, we can't guarantee the 
accuracy of the model. In this paper we have tested only the two dimensional version 
of  Fluent  and  thus  we  can  use  the  simulator  only  for  channel  in  which  the  two 
dimensional  approximation  can  be  done.  We  can  therefore  study  wide  channels  
proprieties and predict velocity profiles, pressure field and flow depth even in complex 
two dimensional geometry. However we need to ensure that all the length scales can be 
resolved with enough discrete points by the model as described in paragraph  3.2.1.. 
With the tested resolutions, we have found good skill of the model in simulating the 
smooth wavy surfaces of the undular jump. The micro physics of the back flow, that we 
can associate at the foam, can't be simulated properly because has three dimensional 
feature  and  the  length  scale  is  much  smaller  than  our  grid  resolution.  This 
phenomenon  occurs  if  the  wave  overtakes  some  critical  parameters  as  the  Froude 
number, the curvature of the inlet velocity profile or the turbulent intensity. However, 
we can still  use the simulator to find critical parameters that define wave breaking 
because  they  are  found  through  a  series  of  reliable  simulations.  Over  this  critical 
parameters the simulations become quantitative unreliable even if they look qualitative 
correct.

4.2.2. Computation cost 

All the models used in the simulator are strictly necessary to yield reliable results. 
Thus, no time can be saved simplifying the models. Unsteady VOF model may takes lot 
of time to reach the steady solution from an arbitrary initial condition. Thus, a way to 
save calculation time is to impose initial condition as close as possible to the expected 
steady solution. However, the parameter that affects more the calculation time is the 
grid resolution. With a standard 3 GHz CPU the calculation time may differs from a 
day for v=34 , to several weeks for =85 . As we have seen in paragraph 3.2.1., 
the increment of the resolution over a certain threshold, may not improve the quality 
of the results. Therefore, working with high resolution meshes could be expensive and 
does not yield any significant quality improvement. For two dimensional structured 
mesh and near critical flow simulations, we have defined that the lowest resolution that 
yields  good  results,  is  about  20  points  for  the  smaller  phenomenon  length-scale. 
Another approach with Fluent that could save calculation time even if more elaborated, 
is to adapt the grid where necessary. Fluent can perform simulations in low resolution 
till the steady solution is found, and then perform a grid adaption in the high shear 
region and in the interface to improve the quality. This method could be really useful 
in three dimensional simulations in which calculation cost have to be taken in account. 
Moreover, in order to reach a good steady solution in less time, it's possible to run the 
model with a large time step (Courant number around unit) and, when steady solution 
is  closer,  to  decrease  the  time  step  in  order  to  simplify  the  convergence  of  the 
governing equations. 
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4.3. Future studies 

4.3.1. Improving the model 

Fluid dynamic for open channel flows has been historical studied with real experiment 
based on the scale invariance.  This  work is  just a  first step in the introduction of 
numerical simulators. The model need to be tested in the three dimensional version, 
more useful and with a wider applicability range even if the calculation cost is high. It's 
also necessary to study a model to parametrize foam behaviors in order to perform 
quantitative  studies  in  presence  of  rolls  and broken flow in general.  The required 
resolution to resolve foam is probably an unacceptable request for a Fluent simulation 
of an open channel. Near critical flows in natural rivers and in artificial channel in fact, 
show often foam formation in presence of a non regular bed. 

4.3.2. Possible applications 

Using the defined model, this work presents few analysis of  the critical parameters 
that characterize wave breaking. Future studies are still necessary to understand all 
the synergy between the inflow conditions and to define in a more general way the 
critical thresholds. For example, is interesting to understand how the velocity profile 
shape affect  the wave breaking at  different Froude number and how the turbulent 
parameters affect the free surface with different velocity profiles.  

At the moment, the simulator give reliable results in a certain applicability range (see 
4.2.1.). A possible research within this range, could be to study the critical parameters 
of  waves created by a step of  small  amplitude placed between two subcritical  flow 
regions (Fig 4-2 and  Fig 4-3).  The formation mechanism is similar to the undular 
jump but the velocity and pressure profiles are necessarily different because a vertical 
fall occurs before the first crest.

The final goal could be the simulations of channels with an high degree of complexity 
and near critical flow. These channels have been recently built in all over the world for 
recreational  and  sportive  use  (Fig  4-1).  Complexity  degree  is  high  because  three 
dimensional effects are involved and the presence of  subcritical flow yields that the 
downstream conditions can affect the flow upstream. The presence of foam necessarily 
complicates the simulations.  The introduction of  numerical simulator in the design 
process  could improve the quality  of  the results.  With such tool,  water  structures 
could be predicted during design operations. At the moment the designers of  these 
channels use experience and basic pattern already testes.     
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Fig 4-1: Artificial channel for sportive use in Spain in dry conditions. 15 m3/s of water are 
pumped at maximum discharge.   

 

Fig 4-2: Undular jump formed by a drop in occasion of Tevere river flooding (Roma 2008) 
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Fig 4-3: Step undular jump in Naviglio channel (Turbigo, 2005)  

56



Appendix A
From the momentum function equation (1-11) we have: 

1V 1
2 A1
g


y1
2

2
b=2V 2

2 A2
g


y2
2

2
b

for the conservation of the discharge we can write

V 2=
A1V 1

A2

and from the Froude number definition 

V 2=F 2g y

with some little algebra we have 
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this  equation  can  be  resolved  in  general  but  considering  that  for  fairly  straight 
prismatic channel  is not much different in the two channel sections, we can assume
1=2= . With these consideration we have two solutions 

t '=1

t ' '=
1
2

18 F 1
2−1

t ' is the obvious solution in which the depth before and after the jump are the same 
and the flow is uniform. t ' ' define the relations between the initial depth and the 
sequent depth. 

Appendix B
Here are presented the user define function for velocity inlet profile and for k−
turbulent inlet profiles wrote in c++ language. 

#include "udf.h"
#define N 7.0
#define VMED 2.28
#define YMAX 0.2
#define Puno 8.1
#define Pdue 7.7
#define YC 0.27
#define factor 1.0

DEFINE_PROFILE(x_velocity,thread,index)
{
  real x[ND_ND]; /* this will hold the position vector */
  real y;
  real ytemp;
  face_t f; /*number of face ID*/
  begin_f_loop(f,thread)  /* loops over all faces in the thread passed
                              in the DEFINE macro argument */
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    {
      F_CENTROID(x,f,thread);
      y = x[1];

ytemp= pow(y/YMAX,(1/N));
      F_PROFILE(f,thread,index) = (VMED*(1/N+1))*ytemp ;
    }
  end_f_loop(f,thread)
}

DEFINE_PROFILE(k_profile,thread,index)
{
  real x[ND_ND]; /* this will hold the position vector */
  real y;
  real Itemp;
  face_t f; /*number of face ID*/
  begin_f_loop(f,thread)  /* loops over all faces in the thread passed
                              in the DEFINE macro argument */
    {
      F_CENTROID(x,f,thread);
      y = x[1];

Itemp= pow(  factor*((Puno-  Pdue*  y/YMAX)  /100.0)*VMED,2.0);
      F_PROFILE(f,thread,index) = 3.0/2.0*Itemp;
    }
  end_f_loop(f,thread)
}

DEFINE_PROFILE(e_profile,thread,index)
{
  real x[ND_ND]; /* this will hold the position vector */
  real y;
  real Itemp;
  face_t f; /*number of face ID*/
  begin_f_loop(f,thread)  /* loops over all faces in the thread passed
                              in the DEFINE macro argument */
    {
      F_CENTROID(x,f,thread);
      y = x[1];

Itemp= 3.0/2.0 * pow(  factor*(Puno-  Pdue*  y/YMAX)  /
100.0*VMED,2.0);
      F_PROFILE(f,thread,index) = pow(0.09,0.75)/ (0.07 *YC) * 
pow(Itemp,0.75);
    }
  end_f_loop(f,thread)
}
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